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The present article focuses on theoretical elucidation of possible effect of mechanical deformation on
spatio-temporal emergence of unusual polymer morphology subjected to quiescent isothermal crystallization
conditions. The present theory developed is based on a phase field model consisted of non-conserved time
dependent Ginzburg-Landau equation having an asymmetric double well potential in the crystal order param-
eter signifying metastability for crystallization, coupled with the chain tilt angle involving curvature elasticity
and strain recovery potentials. Under quiescent crystallization conditions, the curvature elasticity term is
needed to discern the emergence of sectorized single crystals. Upon coupling with the strain recovery potential,
the numerical calculation captures ripple formation running across the long lamellar growth front, which may
be attributed to lamellar buckling caused by the volume shrinkage. Of particular interest is that these simulated
topologies of the single crystals are in good accord with the growth character of syndiotactic polypropylene
single crystals observed experimentally by us during isothermal crystallization from the melt.
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I. INTRODUCTION

A rich variety of polymer morphology ranging from
single crystals to polymer spherulites has been reported over
a half century[1–4]. The former has been generally grown
from polymer solutions, whereas the latter is commonly pro-
duced from the melt by either cooling or thermal quenching
below the crystallization temperature. Recently, it has be-
come apparent that some polymer single crystals can be
grown from the melt[5] as well. Among them, syndiotactic
polypropylene(sPP) shows intriguing single crystal texture
with periodic ripples(i.e., corrugated ridges) running across
the fastest growing direction of the lamella, i.e., the crystal
b-axis. A natural question arises as to why the ripples would
form in the first place and second why these ridges have to
be periodic. The initial explanation was that these periodic
ripples might be a consequence of thermal shrinkage of the
lamellae during cooling to ambient due to very thin nature of
the sPP films[6]. Another conjecture is due to the differential
contraction between the lathlike lamellae and the amorphous
substrate during anisotropic crystallization[7,8]. Interest-
ingly, the periodic patterns, similar to those of sPP, were
observed over 40 years ago in solution-grown truncated
single crystals of polyethylene[9], which was attributed to
the collapse of the nonplanar pyramid shaped single crystal
during solvent evaporation.

There have been numerous theoretical efforts to elucidate
polymer crystallization employing diverse approaches. One
of the earliest theories for crystallization of low molecular
substances from vapor, due to Burton, Cabrera, and Frank
[10–12], is called the BCF theory. The BCF theory essen-
tially involves the classical diffusion problem of molecules
adsorbed on the crystal surface diffusing towards steps and

kinks on the surface. Subsequently, Lauritzen and Hoffman
(LH) [13,14] presented a kinetic nucleation theory involving
selection of a lamellar thickness that is kinetically most fa-
vorable. The LH theory was able to predict the equilibrium
lamellar thickness as well as the rate of the crystal growth,
especially when the growth rate in all the sectors is uniform.
Based on Langevin dynamics, Muthukumar and Welch
[15,16] demonstrated that the initial lamellar thickness is
controlled by entropic barriers rather than enthalpic factors
considered in the LH theory. Moreover, the original LH
theory was designed for the prediction of kinetically equili-
brated lamellar thickness, and thus it was neither capable of
predicting the overall shape of the crystal nor simultaneously
predicting the differential growth rates in different sectors of
the crystals. As a result, the original LH theory was inca-
pable of describing the emergence of the curved single crys-
tals or anisotropic crystals. Miller and Hoffman[17,18] later
modified the LH theory to account for the curved facets in
polyethylene single crystals growing through a serrated
growth front. Although this modified theory could describe
the growth rates of the flat and curved edges of a single
crystal, it did not give a full description of the curvature
and/or surface textures of the single crystal.

Sadler[19,20] provided a kinetic approach in the context
of the surface-roughening concept where new chains deposit
on an existing surface in the form of small packets. Whereas
any empty site has the same probability to allow deposition
of a new packet, probability that desorption will take place at
an occupied site depends on the energy of the binding of the
packet. An isolated packet will have a high energy of bind-
ing, whereas a packet at a kink or a bend has a lower energy.
Numerical simulations based on this theory showed appear-
ance of curved growth fronts, but the chief objection to this
theory arose from the fact that experiments did not provide
any clear evidence to indicate that the crystal surface is
rough.*Corresponding author: tkyu@uakron.edu
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Mansfield [21] proposed a dynamic model based on a
system of two coupled differential equations based on the
Frank’s equation[22] to explain the formation of curved
single crystals. Point and Villers[23], in order to explain
curved crystal growth, provided a completely different inter-
pretation, based on the fact that the crystal growth is homo-
thetic, i.e., it involves uniform expansion or contraction of
the interface. Essentially, what is achieved in all models
based on the Frank’s equation is that an infinitely narrow
(i.e., sharp) moving interface is used to represent a solid-
liquid boundary over which conditions of temperature and
composition must be satisfied. Because of the discrete sharp
boundary, mathematical singularity was encountered. The so-
lution therefore did not allow a true velocity selection, but
only allowed for obtaining a steady state solution for a range
of velocities[24]. Surface topology of single crystals contin-
ues to attract the interest of the polymer community. One of
the latest attempts was due to Huet al. [25] who have dem-
onstrated, based on the Monte Carlo simulations, the growth
of shish-kebab structures growing during polymer crystalli-
zation. Although the simulated shish-kebab structure was
similar to the experimental one, the origin of the emerged
periodicity was not addressed.

In 1937, Landau[26] developed a theory of phase transi-
tion, where he represented the phase in the form of a con-
tinuous field of an order parameterc, which has different
stable values in different phases. Landau expressed the free
energy of phase transition in the form of an expansion in
powers of the order parameter,Df =Ac2+Bc3+Cc4+¯.
The first-order term of the expansion is always zero so that
the free energy is invariant in all coordinate transformation.
The coefficients of the second-, third-, and fourth-order terms
A, B, andC, are recognized as functions of such variables as
pressure and temperature. Landau specified the conditions
for first-and second-order transition: for a second-order tran-
sition the coefficient of third-orderB is exactly zero; for the
first-order,B is nonzero. In the former case, the free energy
is symmetric double well and the chemical potential has two
roots that differ only in sign. In the latter case, the free en-
ergy is an asymmetric double well, which accounts for the
metastability. A time dependent form of this theory, also
called a time dependent Ginzburg-Landau(TDGL) theory,
was applied explicitly to the first-order phase transition by
Chan[27]. He showed that the unique characteristics of the
first-order phase transitions, viz., the presence of a rather
sharp interface and latent heat of phase transitions can be
recovered from the solution of such a model.

In a previous paper[28], we proposed a phase field model
[29,30] based on a nonconserved time dependent Ginzburg-
Landau(TDGL modelA) equation, which expressed the en-
tire system as a time dependent spatial field of a scalar order
parameter, undergoing phase transitions from amorphous
melt to crystalline solid. The uniqueness of the model is the
diffuse interface that eliminates the numerical singularity in-
herent in the original Frank’s equation. This approach was
originally applied to describe the crystallization of metallic
crystals[29,30]. Recently, it has been extended by us for the
elucidation of both diamond-shaped and curved polyethylene
single crystals[28]. However, the above TDGL modelA
equation alone is incapable of generating the ripples ob-

served experimentally in sPP. This has led to the present
study in which we adopt two coupled nonlinear reaction dif-
fusion equations to demonstrate possible influence of me-
chanical coupling on the corrugated ripple textures in sPP
single crystals subjected to quiescent isothermal crystalliza-
tion.

II. THEORETICAL SCHEME

The total free energy of crystal ordering may be described
by

F =E sf local + fgradddV, s1d

where the free energy density of crystal ordering consists of
a local term and a nonlocal gradient term. Thef local is given
in the form of Landau expansion of a nonconserved crystal
order parameter,c [30,31], viz.,

f localscd = WcE
0

c

psp − 1dsp − zd dp

= WcFz
c2

2
− s1 + zd

c3

3
+

c4

4
G . s2d

This local free energy has an asymmetric double well po-
tential for crystal ordering with respect toc, in which c=1
represents the crystalline solid, whereasc=0 represents the
amorphous melt(Fig. 1). Wc is a dimensionless constant
representing the strength of the potential field pertaining to
c, andz represents the peak position of the energy barrier.

The nonlocal free energy termfgrad is customarily given
as

fgradscd =
skc · ¹ cd2

2
, s3d

where kc is the tensor representing the coefficient of the
interface gradients of thec field, the dot product ofkc and
¹c is vector, and thus its square is scalar. Note that the

FIG. 1. Schematic plot of local free energy density and crystal
order parameterc for various temperatures showing the metastable
energy barrier for phase transition from the meltsc=0d to the crys-
talline statesc=1d. At equilibrium melting point atTm

0 the free
energy level of both the melt and crystalline state is the same.
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interface gradient free energy is nonzero only at the interface
s0,c,1d.

Although the polymer chains are flexible in the melt,
these molecules become significantly stiffer upon incorporat-
ing into the crystals. However, the crystal-melt interface be-
haves like liquid crystals or liquid membranes of colloidal
systems having intermediate properties between the liquid
and solid polymer single crystal. To appreciate such a pic-
ture, a schematic sketch displaying a chain folded lamella
with periodic undulations is shown in Fig. 2, in which chain
tilting occurs, which is represented by a tilt angleu made by
the chain stem with the normal to the average plane of the
lamella. Polymer crystal is a planar ensemble of chain stems
standing parallel to each other. Thus, any out of plane chain
tilting imposes a curvature elastic free energy penalty. Since
the solid-liquid interface has an intermediate degree of order,
it is necessary to take into consideration a higher order cur-
vature elastic term to reflect the crystal-melt interface. We
define the chain-tilting angleu as the angle made by the
polymer chain stems with the normal to the average plane of
lamella (Fig. 2). Then the curvature elastic free energy can
be expressed as:

fce= 1
2fkus¹ud2 + «s¹2ud2g, s4d

whereku and « are coefficients of the gradients ofu field,
representing the second-order and fourth-order curvature
elastic terms, respectively. Physically, the first term in Eq.(4)
denotes the nonlocal free energy arising from the gradient of
the interface associated with tension, whereas the second
term refers to nonlocal free energy due to the curvature elas-
ticity due to bending. The detailed derivation of this free
energy may be found in Guenthner and Kyu[32].

This chain tilting process was originally introduced to de-
scribe the development of banded textures in liquid crystal-
line polymers after cessation of shear[32], in which the
emergence of banded textures in the liquid crystalline poly-
mers has been explained satisfactorily. When the crystalliza-
tion is taking place, there is a stress built up at the interface.
One mean of releasing the stress is through a relaxation pro-
cess, which may occur in the form of local reorientation such
as the chain tilting. Assuming that the deformation is small,
the strain in the melt at the interface may be given as

l

lr
= cosu, s5d

wherelr is the maximum recoverable strain in the material,
andu is the chain tilt angle. Using a neo-Hookean-type po-
tential, the free energy density of elastic deformation may be
written as

fel = Wu fslrcosud2 + 1/slrcosud2 − 2g, s6d

where Wu is the elastic modulus. For small deformation
strains we have cosu<1−u2/2 and 1/cosu<1+u2/2. If
the chain tilt angleu is small then the recoverable strain must
also be small, i.e., defing the variablew=4slr −1d, w must
also be small. Neglecting higher powers ofw we can write
lr

2=s1+w /4d2<1+w /2, and 1/lr
2<s1−w /4d2<1−w /2.

Substituting these apporximations in Eq.(6), one obtains

fel = WuFu 4

2
− 4slr − 1du 2G . s7d

Physically Eq.(7) represents the strain recovery potential
associated with the deformation or volume contraction dur-
ing crystallization. This free energy has two minima at
±w1/2= ±2Îslr −1d, representing the two stable orientations.
The ordering in the orientational field takes place in conjunc-
tion with the propagation of the interface in the crystal order
parameter field. Since the two order parameter fields do not
occur independently during crystallization, these two pro-
cesses must be coupled through a term composed of a linear
and/or quadratic dependence of order parameters as follow:

fcouple= − ausc − c2d, s8d

a is the coupling strength, which is normally weak, i.e.,a
!Wc. This coupling term was chosen to be nonsymmetric in
u, so that the system can discriminate the chain tilting in one
sector from that in the other sector in the crystal.

The total free energy functional,Fscd is then given as

Fscd =E WcFz
c2

2
− s1 + zd

c3

3
+

c4

4
G +

skc · ¹ cd2

2

+
1

2
Hkus¹ud2 + «s¹2ud2 + WuFu 4

2
− 4slr − 1du 2GJ

− ausc − c 2ddV. s9d

The total free energy of Eq.(9) is further inserted in two
nonconserved TDGL equations, viz.,]c /]t=−GcdF /dc and
]u /]t=−GudF /du, to give

] c

] t
= − Gc fWccsc − 1dsc − zd − skcd2¹2c + aus1 − 2cdg,

s10d

] u

] t
= − GuhWuu f4slr − 1d − u 2g

− ku ¹2u + «¹4u + ac s1 − cdj, s11d

whereGc is the mobility representing the propagation of the

FIG. 2. Schematic sketch displaying a chain folded lamella with
periodic undulations, in which chain tilting occurs, represented by a
tilt angle u made by the chain stem with the normal to the plane of
the lamella together with the solid-liquid interface having an inter-
mediate degree of order.
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interface that is inversely proportional to the viscosity or the
frictional coefficient, whereasGu is the rotational mobility
associated with the orientation of the chain in the dissipative
medium. Physically, Eq.(10) signifies the spatio-temporal
evolution of crystal order parameter[28], whereas Eq.(11)
arises due to the strain recovery deformation.

It may be noted here that the coupling term,acs1−cd in
Eq. (11) is nonzero only at the interface and therefore in-
duced deformation must occur at the interface. On the other
hand, the coupling term,aus1−2cd in Eq. (10) promotes
crystallization in regions that simultaneously deform to ac-
commodate the coupling effect. It is apparent that theaus1
−2cd term changes its sign during crystallization, i.e., it is
positive in the meltsc,1/2d and becomes negative when it
is in the crystalline statesc.1/2d. During crystallization at
the interface wherec.1/2 the coupling terms in thec and
u have opposite signs. Therefore, the two propagating waves
mutually interfere during solidification, resulting in the trans-
formation from the solitary wave to the oscillatory wave,
which in turn generates a rich variety of morphological pat-
terns. If the coupling terms in the two equations have the
same sign, the two waves propagate in the same direction
without any interference. As a consequence, there will be no
pattern formation. Hence the opposite sign of the coupling
terms in the two corresponding fields is the essential criterion
in order to discern any pattern formation. It should be em-
phasized that a simple linear or quadratic coupling in the two
modelA equations will not generate any patterns.

UsingD as the diffusion constant andd* as the character-
istic length, we can convert Eqs.(10) and(11) into the non-
dimensionless form

] c

] t
= − G̃c fWccsc − 1dsc − zd − sk̃cd2¹2c + aus1 − 2cdg,

s12d

] u

] t
= − G̃uhWuuf4slr − 1d − u2g

− k̃u¹2u + «̃¹4u + acs1 − cdj, s13d

where,

t=
D

d*2 t, x̃2 =
x2

d*2 , G̃c = Gcd*2

D
, G̃u = Gud*2

D
,

s14d

sk̃cd2 =
skcd2

d*2 , k̃u =
ku

d* , «̃ =
«

d*4 .

It should be pointed out that except for the coupling coeffi-
cienta there is no adjustable parameter in Eq.(12); that is to
say, all the remaining model parameters can be determined
experimentally(see the Appendix). However, there is no ex-
perimental means of determining the parameters in the gov-
erning equation[Eq. (13)].

Equation(12) and (13) were solved numerically in two
dimensions on a square lattices2563256d using central fi-
nite forward difference scheme for spatial discretization and
explicit forward difference for time steps with an absorbing

boundary condition. The simulation was performed using
various temporal stepssDtd on several grids(64364, 128
3128, 2563256, 5123512, and 102431024) to assure the
stability of the simulation; however, only the results of
(5123512) simulation are shown here. To avoid over crowd-
ing only a single nucleus was triggered via perturbation in
the simulation.

III. RESULTS AND DISCUSSION

The uniqueness of the phase field approach is the double
well potential that is capable of describing the metastability
inherent to crystallization. Here, the double well potential
has been mathematically described in the framework of a
Landau type free energy expansion by use of a crystal order
parameterc [31]. The free energy double well has been op-
timized to the experimental conditions involving crystalliza-
tion temperature, and material properties of the polymer(i.e.,
sPP) such as the apparent melting point at that specific crys-
tallization temperature, the equilibrium melting point, and
the latent heat of crystallization of the sPP(see the Appen-
dix). The higher of the two minima in the free energy repre-
sents the metastable state whereas the lower minimum rep-
resents a more stable solid state. It should be emphasized that
this free energy state atc=1 is not necessarily equal to the
final equilibrium state, but it merely corresponds to that of
the lamellar thicknesslz that a crystal achieves at a given
crystallization temperature, because the crystal order param-
eter has been normalized asc= l / lz. It is plausible that poly-
mer crystallization possesses many levels of metastability, as
crystallizing chains may not necessarily achieve a true equi-
librium state. Although the polymer crystals may be trapped
kinetically in a metastable state, it is nonetheless more stable
than the melt[33,34]. Even if the present double well is
replaced by multiple well, the intermediate metastable states,
if present, are short lived when compared to the time scale
under consideration, especially in the context of the coarse
grain model being considered here. In addition, only two
states, metastable or otherwise, i.e., the melt and crystalline
states, have been predominantly observed during the course
of crystallization; unless the short-lived intermediate meta-
stable states have been deliberately trapped by some experi-
mental means. Hence, the current double well approach of
Fig. 1 should be adequate for the description of the tradi-
tional isothermal crystallization. However, if one chooses to
explain the entrapped metastable states, the current phase
field approach may be modified with multiple-well poten-
tials, which is evidently beyond the scope of this work.

In a recent optical microscopic investigation of a blend of
syndiotactic polypropylene(sPP) and poly(ethylene octene)
copolymer (POE) isothermally crystallized at 120°C from
the melts160°Cd, a rectangular shaped crystal grows into a
sizable single crystal that can be discerned under optical mi-
croscope[35]. As depicted in Fig. 3, the tiny periodic stria-
tions appear running across the long axis of the single crys-
tal. Although the crystallization was carried out from the
melt, it is conceptually similar to the solution crystallization
because POE effectively acts like a polymer diluent to sPP.
The atomic force microscopic investigation was undertaken
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to identify these periodic ripples, which turned out to be the
corrugated ridges[Fig. 4(a)] similar to those reported by oth-
ers [1,9], except that these ridges primarily formed in the
middle section of the sPP single crystal. It should be empha-
sized that the present optical micrograph was taken at the
crystallization temperatures120°Cd; thus, these periodic
ridges emergein situ during the course of crystallization, and
thus discounting earlier explanation of thermal contraction of
the single crystal upon cooling[6]. The contour map of the
atomic force micrograph shows clearly that these periodic
ridges are confined to thin sectors of the fastest growing
front [Fig. 4(b)]. This observation gives a hint that some
types of mechanical deformation might have occurred in the
aforementioned anisotropic crystallization, thereby influenc-
ing the morphology of single crystals. Physically, the poly-
mer melt is highly constrained along the fastest growing
b-axis direction. When the crystallization takes place follow-
ing thermal quenching, there is a sudden increase in density
of the emerging crystals, which in turn makes the volume of
the constrained melt to shrink at the solid-liquid interface
(i.e., crystallizing front) (Fig. 2). If the shrinkage takes place
preferentially along the constrained direction, one possible
scenario in releasing the internal stress is through formation
of periodic ripples as the propagating lamellar front solidi-
fies. If the lateral shrinkage occurs, a mechanical torque
would develop causing the emerging lamella to twist al-
though the crystallization is supposedly under quiescent con-
ditions.

In the absence of the stress, the system reduces to Eq.(12)
which is essentialy the TDGL(model A) pertaining to the

nonconserved crystal order parameterc. This modelA has
been successfully applied to predicting various crystal to-
pologies such as faceted and curved single crystals[28]. The
first term on the right hand side of Eq.(12) is due to the
surface nucleation, whereas the second term represents the
interface propagation signifying the growth. The general
treatement given by the existing nucleation theories for poly-
mer crystallization gives the structure formed at the
asymptotic equilibrium through minimization of the free en-
ergy with respect to the lamellar thickness. The classical ki-
netic equation therefore represents only the velocity of crys-
tal growth. Since the original LH theory lacks the spatial
diffusive term, Mansfield[21] employed the Frank’s theory,
which involves the first-order moving boundary equation to
account for the spatio-temporal growth. The solution of the
Frank’s equation encountered mathematical singularity be-
cause of the sharp interface of zero thickness. This sharp
boundary problem could have been avoided, had the time-
dependent second-order diffusion equation of the BCF
theory been adopted instead[12]. The advantage of the BCF
theory is that the crystal interface is relatively smooth, simi-
lar to what we have been advocating in the present theoreti-
cal work. One advantage of the present phase field model is

FIG. 3. Optical microscope micrograph showing the spatio-
temporal evolution of ripples in a single crystal of syndiotactic
polypropylene in 30/70 melt blend of sPP and poly(ethylene
octene) copolymer following isothermal crystallization at 120°C
quenched from 160°C. These pictures were obtained using an
Olympus optical microscope, model BX 60.

FIG. 4. Atomic force microscope micrograph showing the emer-
gence of ripples in a single crystal of syndiotactic polypropylene in
2/98 melt blend of sPP and poly(ethylene octene) copolymer fol-
lowing isothermal crystallization at 120°C quenched from 160°C.
These images were obtained using Quesant atomic force micro-
scope(AFM), model Q-SCOPE 350:(a) wave mode and(b) the
corresponding contour plot. The scale was 2mm per division.
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that the asymmetric potential was used in thec field to ac-
count for the metastability for nucleation. If one utilizes a
single well potential,f local~c2 in Eq. (2), the BCF equation
can be recovered, which predicts the structure at equilibrium.
However, the single well potential is incapable of explaining
the metastability, which is an essential part of polymer crys-
tallization.

It should be emphasized that a single equation alone is
inadequate for explaining the intricate morphological tex-
tures of lamellar crystals such as sectorized single crystals,
corrugated ripples, among others. Sectorization is a ubiqui-
tous feature observed in polymer single crystals, which is
thought to be a result of the fact that orientation of the folds
varies from region to region within the same single crystal.
In other words, a single crystal is thus divided into a fixed
number of regions called sectors such that the orientation of
the folds on the surface within a given sector is uniform[36].
The existence of sectors in single crystals of syndiotactic
polypropylene[37] and polyethylene[38] has been directly
confirmed in the investigation by atomic force microscopy. A
question arises as to the significance of these sector demar-
cations that appeared in the final morphological images.

In order to investigate the origin of the sector demarcation
in the single crystals using the model proposed above, nu-
merical simulation was carried out based on the values of
various dimensionless coefficients of Eq.(12) [Table I(b)],
calculated from various experimentally derivable properties
of sPP listed in Table I(a). In the absence of the deformation
term, fel=0, the sectorization in the emerging single crystals
was captured theoretically for the first time in both the order
parameter and the tilt-angle fields(see Fig. 5), although these
sectorized single crystals, having two sectors along the fast
growing front and the remaining two along the slow growing
front, have long been recognized experimentally[1,9]. As the
single crystal comprises plate-like sectors, it is possible that
these plates would have a small variation in their overall
orientation arising from their curvature elastic term, i.e.,
«̃¹4u. It is apparent that boundaries demarcating these sec-

tors are simply the trajectories of the growth that run diago-
nally between the(010) and (100) directions from the com-
mon nucleus. These trajectories are the demarcation of
polymer chains having different chain orientations(or tilt
angles). It should be emphasized that these sectorized bound-
aries could be recorded permanently only when the fourth-
order derivative curvature elastic term was included in the
simulation, thereby signifying the role of the curvature elas-
ticity in the formation of these sectors.

As pointed earlier, the shrinkage of the constrained melt
can cause the internal stress to develop at the solid-liquid
interface by virtue of a sudden increase in density in the
crystalline phase. To release the stress, the emerging lamella
may buckle as the uniaxial shrinkage occurs in theb-axis
direction or may twist in the case of lateral contraction.
When the stress relaxes slowly due to high viscosity of the
polymer melt at the interface, the lamellar single crystal has
to deform as a means of releasing the excess stress. The
question is why the lamellar single crystal has to deform in a
periodic manner. A possible account is due to the induced
mechanical field during isothermal crystallization.

We therefore attempted to couple the two nonlinear pro-
cesses of crystallization and mechanical deformation in order
to explain the unique morphology observed in case of sPP
single crystal. As expected, the solution of the coupled Eqs.
(12) and(13), gives the oscillatory wave propagation leading
to emergence of periodic texture. The initial nucleus is iso-
tropic (picture not shown), but the emerging single crystal
becomes anisotropic with elapsed time by virtue of the dif-
ference in the growth habits of sPP in which the directional
growth in theb-axis direction is faster than that along thea

TABLE I. Model parameters calculated from experimentally de-
termined material parameters of sPP at a given experimental
temperature.

(a) Material parameters (b) Model Parameters

DHu
a 1.7143108 J/m3 Gc 4.875310−2 s−1

n 108 m/s skcd11
2 3.872310−16 m2

sav
b 0.0109 J/m2 skcd22

2 6.491310−16 m2

s11
c 0.0096 J/m2 Wc 3409

s22
d 0.01243 J/m2 z 0.3431

Tm
0 e 434 K

Tm 413 K

T 398 K

aReference[43].
bsav=0.1ÎabDHu as in Ref. [44], where a and b are crystallo-
graphic dimensions.
cs11=0.1bDHu.
ds11=0.1aDHu.
eReference[45].

FIG. 5. Spatio-temporal growth of syndiotactic polypropylene
single crystals, exhibiting sectorization as simulated based on the
coupled Eqs.(12) and (13) using the experimentally determined

material parameters listed in Table I(b) and G̃u=0.4, k̃u=0, «̃=0.3,
anda=0.1. (a) the crystal order parameterc, (b) the tilt angleu.

MEHTA et al. PHYSICAL REVIEW E 69, 061802(2004)

061802-6



axis, reflecting the differential fold energies along the two
growth fronts[5]. Concurrently, the periodic ripples form in
the emerging single crystal, predominantly in the sectors that
belong to the long single crystal axis(Fig. 6). It is striking
that the simulated periodic pattern is in close agreement with
that observed experimentally by us for sPP(Fig. 3), although
it is not our primary intention to match with any particular
set of experimental results. Although presently it may not be
feasible to experimentally determine the dimensionless pa-
rameter«̃ in Eq. (13), it may be instructive to demonstrate
the effect of«̃ on the length scale such as lamellar crystal
size and periodicity of the ripples, as well as their shapes. In
absence of the higher order curvature gradient term«̃ or
when its value falls below the critical value of«̃, the ripples
disappear(Fig. 7). This behavior is consistent with the theo-
retical demonstration by Guenthner and Kyu[32] that the
propagation of the domain wall(solitary wave) can trans-
form into the oscillatory wave when the coefficient of the
curvature gradient«̃ exceeds the critical value, and vice
versa.

It is noticed that there are some differences between the
experiments of Lovingeret al. [6] and the present study. That
is to say, their periodic ripples are located in the thick trans-
verse sectors of the sPP single crystals[6] as opposed to our
finding in which the periodic ridges are confined to the thin
sectors along the long lamellar axis. Another difference is the
crystallization condition, in which crystallization was carried
out in the neat sPP from the melt in Lovinger’s case as op-
posed to the crystallization in the miscible blends of sPP/
POE (i.e., POE acts like a polymeric solvent to sPP) in the

present study. Although our observation in sPP is in good
accord with those of the solution grown PE by Basset and
Keller [9], the two seemingly different findings of Lovinger
et al. [6] and ours can be reconciled by merely decreasing the
strength of the coupling througha. This leads to a more
restricted faceted growth leading to stress concentration in
both thin and thick sectors. As evidenced in Fig. 8, the simu-
lated pattern with a lower coefficient of coupling term indeed
shows the formation of the periodic ripples in both thin and
thick sectors of the lamellar single crystals, which in turn
confirms that both experimental observations by Lovingeret
al. and ours are not necessarily contradictory, but rather com-
plimentary to each other.

IV. CONCLUSIONS

In summary, the present theory gives a more comprehen-
sive description of polymer crystallization relative to the
BCF or the Mansfield’s theory. This paper clearly demon-
strates the profound influence of the self-generated mechani-
cal fields such as curvature elasticity and strain recovery de-
formation on the intricate morphological textures of polymer
single crystals. It becomes apparent that the higher order
curvature elasticity is crucial to discern the sectorization and
ripple formation in the polymer single crystals. The sector-
ized boundaries are simply the trajectories of the resultant
growth direction that demarcate the regions of different chain
orientations(or tilt angles). The coupling between the crys-

FIG. 6. Spatio-temporal growth of syndiotactic polypropylene
single crystals, exhibiting ripple formation in the sectors belonging
to the long axis in both fields:(a) the crystal order parameter and
(b) the tilt angle. The simulation was carried using the experimen-

tally determined materials parameters of Table I(b) along with G̃u

=0.4, k̃u=0, «̃=0.3, anda=0.1.

FIG. 7. Spatio-temporal growth of syndiotactic polypropylene
single crystals, with the coefficient of curvature elasticity«̃ below a
critical value of 0.26, exhibiting ripple formation which is washed
away as the crystal grows:(a) the crystal order parameterc and(b)
the tilt angleu. The simulation was carried using the experimentally

determined materials parameters of Table I(b) along with G̃u=0.4,
k̃u=0, «̃=0.25, anda=0.1.

ROLE OF CURVATURE ELASTICITY IN… PHYSICAL REVIEW E 69, 061802(2004)

061802-7



tallization and strain recovery deformation further captured
the corrugated ripple textures in both thin and thick sectors
of the single crystal. More importantly, these predicted to-
pologies have been observed experimentally in the melt crys-
tallized single crystals of syndiotactic polypropylene(at least
by us) as well as in the solution grown polyethylene. Al-
though the possible involvement of the mechanical deforma-
tion has long been suspected to exert some influence on the
quiescent polymer crystallization, the present theoretical cal-
culation is the first to demonstrate the need for taking into
consideration the induced mechanical field in explaining in-
tricate single crystal morphology.
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APPENDIX: RELATIONSHIP BETWEEN MODEL
PARAMETERS AND CLASSICAL MATERIAL

PARAMETERES

Model parameters in Eq.(10) can be related to experi-
mental conditions and/or classical material properties that are
characteristics to the polymer under consideration. Accord-
ing to Eq. (2) the change in the local free energy due to
crystallization is given as

Df localscd =
Wc

6
fz − 1/2g. sA1d

For a crystal of average thicknessl and having a cross-
sectional areaA, the Gibbs free energy is given as

Df local = 2Ase − AlDHus1 − T/Tm
0 d, sA2d

whereT is the crystallization temperature andTm
0 is the equi-

librium melting temperature of the polymer.se is the surface
free energy per unit area of the folded surface andDHu is the
latent heat of crystallization. This free energy per unit vol-
ume occupied by a stem may be expressed as

Df local

Alz
= 2

se

lz
− DHus1 − T/Tm

0 dc, sA3d

wherec= l / lz, and lz is the stable lamellar thickness of the
crystal. At the crystallization temperatureT the free energy
Df local is zero when a critical lamellar thicknessl* is reached:

2
se

l*
− DHus1 − T/Tm

0 d = 0. sA4d

By using the Hoffman and Weeks relationship[39], the melt-
ing temperatureTm of the crystal is related to its lamellar
thicknesslz:

2
se

lz
− DHus1 − Tm/Tm

0 d = 0. sA5d

Using Eqs.(A4) and (A5) we can obtain the critical order
parameter for whichDf local=0:

c* =
l*

lz
=

Tm
0 − Tm

Tm
0 − T

. sA6d

From Eq.(2) one can relate the peak position of the energy
barrierz to the stability order parameterc* :

z =
4c* − 3c*2

6 − 4c* . sA7d

The excess free energy at the interface(or the surface)
energys may be evaluated in accordance with Cahn and
co-workers’ approach[40,41], i.e.,

s

nRT
=E

0

1

kcÎ2f local dc. sA8d

At T=Tm the surface energy is given from the Eq.(A8) and
using Eq.(2) as

s

nRT
=

kc

6
sWc/2d1/2. sA9d

Therefore,

kc = 6s2/Wcd1/2 s

nRT
. sA10d

Further, the interfacial thicknessd is estimated as

FIG. 8. Anisotropic single crystal showing ripple formation in
all four sectors as seen in the crystal order parameter fieldc with
the experimentally determined materials parameters listed in Table

I(b) in conjunction withG̃u=0.4, «̃=0.3, k̃u=0, anda=0.025.
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d = kcÎ1/s2f local maxd. sA11d

Using Eq.(2) we obtain

d = 4kcs2/Wcd1/2. sA12d

According to Harrowell and Oxtoby[42], G can be related to
the velocityv of the interface as follows:

v = −
3

2Î2
GdDf local. sA13d

Using Eqs.(2), (A10), and(A12) we obtain the relationship

Gc =
Î2

12
vF s

nRT
s1/2 −zdG−1

. sA14d
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